
1

WHITE PAPER Preparing for peak traffic: A load test guide

Preparing for 
peak traffic:         
A load test guide.

WHITE PAPER

By Tony Le,  WP Engine Sr. Solutions Engineer



Table of Contents.

What is a load test?....................................................................................................3

Why load testing?.......................................................................................................4

Best practices.............................................................................................................5

Running a load test....................................................................................................8

Test configurations..................................................................................................10

Final thoughts..........................................................................................................12

About the author.....................................................................................................14

About WP Engine......................................................................................................15



3

WHITE PAPER Preparing for peak traffic: A load test guide

Introduction.
With the holidays approaching, most marketing teams are 
prepping for impactful, revenue-driving campaigns. Some 
might even be preparing for the launch of a new product on            
Black Friday. If that’s the case, a lot of behind the scenes work 
and build-up has gone into the launch. 

When it comes to ensuring success on launch day, performance 
should be paramount. All the thought, strategy, and preparation 
behind the campaign will be for nothing if the site can’t handle 
traffic during launch. With revenue on the line, it’s best not to 
play the guessing game; knowing the amount of visitors your site 
can handle should be a pivotal part of your pre-launch process. 

The question of concurrent visitors isn’t an uncommon one. 
In fact, it’s top-of-mind for many WP Engine customers hoping 
to win online during the busiest online shopping events of            
the year. Unfortunately, the answer isn’t always straightforward. 
The amount of load a site can take depends, for the most part, 
on two things: infrastructure and application code. 

Load testing, which is performance testing that simulates 
real-world load on any software, application, or website, can 
help answer the question: “how many people can visit my site             
at once?” Proper load testing can help site owners assess things 

like scaling capabilities, lifecycle hooks, security risks, automatic 
code deployment, health checks, and target tracking. 

In this informative white paper, we’ll break down the basics of 
load testing, why you should load test, best practices, and how 
to get started load testing your site before the holidays. 

What is a load test? 
A load test is the process of putting demand on a system 
with the purpose of determining how it will function. Most 
commonly, a load test is performed to simulate peak traffic with 
a high number of concurrent users. In other words, how does 
the site perform under heavy load? 

We often get asked, “how many concurrent users can this 
environment handle?” And the most common answer we give is 
that it depends. On a lot of things. If we boil it down, there are 
three major variables that could go wrong during a major event:

Firstly, it could be the infrastructure and platform solution 
you’re using. It could be that your infrastructure is simply 
underpowered or under-architected. There are also many 
services and applications that go into powering a WordPress site 
(at its most basic these could be Linux, Apache, MySQL and PHP). 

https://wpengine.com/resources/ultimate-pre-launch-guide-wordpress-sites/
https://wpengine.com/support/how-to-brace-for-a-surge-of-traffic/


4

WHITE PAPER Preparing for peak traffic: A load test guide

These could be poorly configured and therefore result in poor 
performance and downtime.

Secondly, the problem might not be infrastructural at all. 
It could be that the WordPress application is particularly 
inefficient, poorly written, or highly dynamic. If the site isn’t 
tuned, all the infrastructure in the world won’t help. Vice versa, 
if the infrastructure/platform is slow, that negates the speed of 
a finely tuned WordPress site. It’s important to address both as 
you load test.

Finally, the third critical variable is to test the right things.  
There’s no point testing functionality on your site that isn’t used 
by a reasonable segment of your visitors, but we’ll get to that in 
more detail later. 

Why load test?
From a business and technical standpoint, it’s important to load 
test for many reasons, with the underlying theme of mitigating risk.

Functional tests don’t reflect the   
real world 
Before going live, your plugins, themes and WordPress core may 
pass a functional test but under normal traffic or heavy load, 
the production environment could see degraded performance.        
Load testing can identify when and where the breaking point 
occurs. With more visibility, you can proactively fix issues before they 
become a bigger problem and impact you when it matters most. 

Downtime is expensive                 
Every minute counts
According to Blazemeter, one minute of downtime during Black 
Friday costs an organization $4,700 on average. Gartner cites 
network downtime costs, on average, of $5,600 per minute.

Within the opening minutes of Prime Day in 2018, shoppers 
reported error messages and broken landing pages on   
Amazon.com. In the U.S., Amazon is estimated to have lost  
$72.4 million in revenue based on 63 minutes of downtime. 
That’s about $1.15 million of lost revenue per minute.

In addition to lost revenue, there are indirect costs associated 
with downtime as well. These include: 

•	 Lost productivity: Employees must set aside their core 
role and responsibilities to focus on disaster recovery. 
Their focus shifts from revenue-impacting work to reactive 
troubleshooting and putting out fires.

•	 Recovery costs: There are costs associated with recovering 
your production environment such as potential loss of data. 
Additionally, in times of urgency, if you can’t solve the 
problem with the current resources, you may need to invest 
in third party integrations or additional infrastructure to 
alleviate the current pain temporarily.

•	 Intangible costs: The cost of damaged brand reputation 
is less concrete. However, consider the long-term 
consequences of downtime and how customers may 
perceive your brand in a highly competitive market.  

Needless to say, planning effectively for big events shouldn’t be 
understated or left until the last minute. Load testing is often 
overlooked in the process and leaves your company in a tough 
position when issues arise. 

Users don’t have time
According to Pingdom, 50% of users will leave if a page takes 
longer than 6.5 seconds to load. There’s a direct correlation 
between increased page load time and bounce rate percentage. 

(The correlation between pageviews and bounce rate%.)

Load testing will help uncover hidden issues so that your 
team can provide an optimal user experience for visitors.                 
This also prevents visitors from getting frustrated and going      
to a competitor’s site for the same content or product.  

https://www.blazemeter.com/blog/why-load-testing-is-important/
https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
https://www.digitalcommerce360.com/2018/07/17/the-potential-cost-of-amazons-prime-day-miss-72-million/
https://www.digitalcommerce360.com/2018/07/17/the-potential-cost-of-amazons-prime-day-miss-72-million/
https://royal.pingdom.com/page-load-time-really-affect-bounce-rate/


5

WHITE PAPER Preparing for peak traffic: A load test guide

Best practices.
Before we dive into the how-to, let’s address a few best practices:

Test early and test often
•	 The earlier you can test, the more time there is to fix any 

bugs or address any bottlenecks. There may be some easy 
optimizations that can be done which will save time in case 
larger issues need focus down the road.

•	 For normal day-to-day activity, we recommend performing 
a small load test after any major site changes—especially 
those that focus on functionality. That way, you can see how 
the changes might affect your daily users. 

•	 For high profile events, a load test with larger volumes 
of concurrent users may present different results than a 
normal traffic scenario. As these events typically involve 
many stakeholders, performing these tests well in advance 
can inform business decisions. Meanwhile, the technical 
team can continue optimizing if results are subpar.

Example: Does it make sense to have a fancy widget that 
dynamically generates real-time data upon every page load?         
This could mean investing in more backend resources 
to support that user experience. Perhaps, it’s optimal to 
temporarily disable this functionality before the event.

Don’t test on production
•	 You wouldn’t want to affect your everyday users and        

daily revenue. If you’re going to put your site under heavy 
load and simulate maximum traffic, it’s best to do this on a 
separate environment that is as similar to the production 
environment as possible. This includes theme, plugins, data, 
third party integrations like CDN, and DNS. On that note, 
you may want to create a unique testing domain versus using 
our temporary wpengine url to replicate DNS performance. 

•	 If you can’t test on a separate environment, then we highly 
recommend testing during a window when traffic is minimal. 
For most businesses in the U.S., that may be around            
3 am to 4 am. It’s best to determine this window using an 
analytics tool like Google Analytics.

What kind of test?
•	 There are many different types of tests including:

•	 Stress testing - also known as fatigue testing,     
this test reveals how the system behaves under 
highly intense loads. How does the system recover? 

•	 Spike testing - a type of stress test evaluating how 
the system performs during a sudden increase 
in workload. Fast ramp-up. How does the system 
respond to spikes?

•	 Soak testing - tests the system over a long 
period of time through a slow-ramp up.                   
Evaluates sustainability. How does the system 
respond throughout the day? 

•	 For this guide, we’ll focus on stress testing to understand the 
limits of what your environment can handle. By finding the 
breaking point, you will be able to better understand capacity 
and strategize scaling efforts to handle periods of high 
demand, giving you the confidence and peace-of-mind that 
things will run smoothly when it’s time to hit the big stage. 

Define KPIs
•	 To gain the most value out of the load test, you’ll want to 

define metrics and parameters for success—and failure. 

•	 What is an acceptable response time, error rate, number of 
transactions passed/failed, requests per second? 

•	 Testing against your KPI criteria will also help evaluate if they 
are realistic or need adjustment.

Monitoring tools
•	 Google Analytics - as the test is in progress, run the current 

metrics against Google Analytics. Are the numbers of active 
users consistent with virtual users tested? Are there any 
drops in page views per second?

•	 Infrastructure/platform monitoring - provide a notice 
in advance that you are testing the environment to ensure 
TechOps alerts aren’t triggered without need. If you’re a    
WP Engine customer, you’ll want to prevent our security layer 
from blocking requests, which means you’ll need to whitelist 

https://wpengine.com/support/about-dedicated-development-environments/
https://wpengine.com/resources/what-is-a-cdn-how-do-they-work/
https://wpengine.com/support/wordpress-best-practice-configuring-dns-for-wp-engine/


6

WHITE PAPER Preparing for peak traffic: A load test guide

the IPs of the traffic source. Depending on the provider,   
the service may be able to provide digestible analytics that 
you might not otherwise have visibility into. 

• Application Performance Monitoring - using a service
like New Relic APM provides visibility into the WordPress
site under heavy load.You may set up alerts when certain
thresholds are reached and keep track of KPIs including
requests per minute, response times, and apdex score.

• External Uptime Monitoring - services like Pingdom and
Uptime Robot offer external uptime monitoring services
which regularly ping your website to ensure it is reachable.
As a last line of alerting, use these tools as you normally
would for day-to-day monitoring.

Third party services - load testing 
There are many options in the market for load testing.         
Since planning and executing the test takes time, choosing 
the right platform is important to maximize ROI. Several things 
to consider when choosing the best service that works for 
you include usability, supportability, realistic user scenarios, 
repeatability, and cost. 

• Blazemeter
• LoadNinja
• Loader.io
• Artillery.io

Where’s the tipping point?
The big question is...when and where does the breaking       
point occur?

“Industry standards suggest that systems are considered 
under load if 80% of resources are being utilized, and 
you should test at least 20% over your expected peak.” 
-Blazemeter

After a load test, you can view the results to determine where the 
environment is saturated with requests. The test environment 
may reach capacity at the point in which hits/sec stops increasing 
and plateaus as virtual users increase. This indicates the system 
can no longer support a larger number of concurrent requests 
and the environment is capped at X virtual users. 

Image by Blazemeter 

At this peak load time, you can use tools like Application 
Performance Monitoring and load test results to cross reference 
data and see how performance may be affected. If the results are 
subpar, WP Engine customers can reach out to our Support team 
for help understanding which parts of the application experienced 
the most stress.

Creating a realistic scenario
• It’s best to start with engaging your marketing, product,

and technical teams to understand what the user journey
will look like.

• If this is an event that has happened in the past, you can
pull historical metrics to understand how users behaved
on your WordPress site. Tip: You can use Google Analytics
to understand the most popular pages visited, time spent,
and bounce rates. WP Engine’s Content Performance can
provide visibility into this as well.

• If this is an ecommerce site, you can create a
scenario based on conversion funnels and most
popular products.

https://wpengine.com/application-performance/
https://wpengine.com/resources/helping-young-businesses-scale-with-new-relic-alerts/?utm_medium=social&utm_source=twitter
https://wpengine.com/resources/helping-young-businesses-scale-with-new-relic-alerts/?utm_medium=social&utm_source=twitter
https://www.pingdom.com/product/uptime-monitoring/
https://uptimerobot.com/
https://www.blazemeter.com/
https://loadninja.com/
https://loader.io/
https://artillery.io/
https://wpengine.com/support/
https://wpengine.com/support/about-content-performance/


7

WHITE PAPER Preparing for peak traffic: A load test guide

•	 To create a realistic test, you’ll want to consider the 
demographic of your users. Where are they coming from? 
What is the percentage of web vs. mobile users? How likely 
are they to drop off?

•	 Note: We’re making the assumption that you’re 
testing the production environment using external 
sources of traffic, outside of your network.          
This helps adequately test variables that contribute 
to performance like DNS, CDN, and latency.

•	 Marketing intelligence: For high profile events such 
as a Super Bowl commercial or Shark Tank airing, 
doing some research around historical traffic 
patterns from similar businesses can help inform 
your testing scenarios.

•	 Example: According to Similar Web           
in 2018, stellaartois.com experienced a    
40x increase from average traffic levels 
after its Super Bowl commercial aired, 
with the majority of requests coming  
from mobile. 

•	 As you plan out your test, you’ll want to think about the 
ramp up. It’s best practice to increase the number of users 
throughout the duration of the test versus ramping up 
immediately to the maximum total. You’ll have better insight 
to the level at which the environment may reach capacity 
or a breakdown. To illustrate, if you ramped up 5,000 
concurrent users within the first minute of the test and        
it failed, it’s difficult to determine how many users caused 
that failure. By contrast, if you increased the number of 
users by 500 every five minutes, you’ll know at which level of 
concurrency failure happens. If performance issues surface 
during the middle of the test, that’s also an opportunity to 
tune up the environment. 

•	 After performing a stress test and optimizing both the site 
and infrastructure, you may be ready to run a test that 
most represents your upcoming event. Depending on the 
type of event, you may design the ramp up around the 
traffic patterns expected for a defined period of time.                  
For example, if it’s Black Friday, does your site experience any 
significant bursts of traffic? If so, at which time and level of 
concurrency? Design your test with these patterns in mind. 

Do as much as you can before testing
If there are any known bottlenecks or areas of optimization, 
we highly recommend tuning up your site before a load test.       
That way, there’s one less variable to address and your team 
can focus on any new problems that surface afterward. After all, 
these improvements are low hanging fruit. 

Let’s say you did make changes to the site after the test, the 
results of any previous load tests would essentially be invalidated 
costing more money to run more tests after each fix. With your 
business’ bottom line in mind, it’s best to perform these tests as 
effectively as possible.

What if we don’t have enough time?
You realize the big event is happening in less than a week and 
you don’t have time to load test. To effectively prepare for the 
event, WP Engine customers should consult with their account 
manager to determine best next steps. At this point, the most 
realistic option may be to scale up the infrastructure. 

Additionally, here’s a list of recommendations that could 
substantially improve your chances for a successful event (and 
normal day-to-day performance overall):

•	 WPE Support: Notify our Support team as soon                  
as possible. This will help our Support technicians 
determine any optimizations that can be made to lessen  
the load of heavy traffic.

•	 Force site to HTTPS: It’s best practice to set your entire site 
to HTTPS. With all URLs secure, you’ll benefit from HTTP/2 
which is the latest HTTP protocol. This upgrade comes 
with speed improvements, reduces web page latency,              
and improves SEO,all without changing your existing code.

•	 Extend caching: By default, Varnish caching purges every 
10 minutes on our platform. Extend the cache length by 
using the WP Engine Advanced Cache plugin. 

•	 Virtual waiting room: Determine the need for a virtual 
waiting room such as Queue-it. These tools allow you to 
effectively manage the number of concurrents by offloading 
excess users to a virtual queue. For ecommerce sites,          
if customers are willing to wait, this feature could be well 
worth it to prevent lost revenue. 

https://www.stellaartois.com/en/home.html
https://www.similarweb.com/blog/super-bowl-ad-impact
https://wpengine.com/support/add-ssl-site/
https://wordpress.org/plugins/wpe-advanced-cache-options/
https://queue-it.com/


8

WHITE PAPER Preparing for peak traffic: A load test guide

•	 MyISAM to InnoDB: For optimal read/writes operations,  
we always recommend using InnoDB over MyISAM.           
For more details, see: wpengine.com/support/database-
optimization-best-practices/

•	 Autoloaded data: By reducing the amount of data that has 
to be loaded on every single page request, there’s less work 
the database has to do: wpengine.com/support/database-
optimization-best-practices/#autoload 

•	 Enable Object Cache: Turning this option on within the 
User Portal will help make your database more efficient. 
Complex database queries can be stored and retrieved via 
Memcache without the database having to do all the work.  

•	 CDN: Leveraging globally dispersed edge servers to store 
static assets will help offload work from the origin server 
and improve performance overall. Example: Cloudflare

•	 Disable WooCommerce Cart Fragments: This is a quick 
way to reduce the number of ADMIN-AJAX requests, 
improve overall cacheability, and site speed of your site. 
Does the shopping cart total need to be updated without 
refreshing the page? If it’s a “no,” then we recommend 
disabling this feature: wpengine.com/support/how-to-
disable-cart-fragments-for-woocommerce/

•	 WooCommerce Custom Orders Table: By default, 
orders are created as custom post types and stored within         
wp_postmeta. For every single order, WooCommerce 
creates over 40 separate post meta entries. As this table 
grows, queries can take longer to run and result in a slower 
site experience for customers. Good news—WooCommerce 
is currently working on a solution: creating separate, 
custom orders tables better designed for ecommerce: 
woocommerce.wordpress.com/2018/07/17/woocommerce-
custom-product-tables-beta/

•	 Redirect to cached page: You may consider redirecting your 
traffic to an optimized, cacheable page, assuming it doesn’t 
affect conversions. For example, if you’re running an ad during 
the Super Bowl, does it make sense to link visitors directly to 
the home page? If the home page is more dynamic, consider 
redirecting/linking visitors to a cacheable landing page to help 
reduce the concurrency impact to the site.

Running a load test.

Load test scenario 
Note: This scenario is fictional and simplified for the purpose      
of demonstration: 

WP Engine will be airing its first ever TV commercial during 
the Super Bowl. Right after the commercial, we expect a spike 
in traffic with a max of 2,000 concurrent users on the site for 
at least 10 minutes. However, we’re not sure if the current 
production environment can handle the load. In this case,    
we’re going to run a stress test to understand where and     
when it’ll reach capacity and breaks. 

To prepare, we cloned wpengine.com to a dev site with the 
domain wpe.codes. From there, we migrated the new site to 
a dev environment that replicates production. This includes 
caching exclusions, redirects, and third party services including 
Cloudflare for DNS and CDN. 

According to Bloomberg, a Super Bowl ad costs $5.3 million in 
2019. In a real world scenario, peak concurrency could be over 
10k users.

User scenarios 
Based on metrics from Google Analytics and parsing our access 
logs, we’ve defined five user scenarios:

1.	 User visits home page  bounces immediately (40%)

2.	 User visits home page  navigates through several pages  
drops off (30%)

3.	 User visits home page  navigates through several pages  
visits plan page  drops off (25%)

4.	 User visits home page  chooses a plan  signs up (1%)

5.	 User visits home page  visits plan page  chooses a plan 
 signs up for plan (4%)

To capture this activity for our load test, we’re going to use 
Blazemeter’s Chrome Extension which allows you to record 
scripts in Apache JMeter and Selenium format. By using Jmeter, 
we can get the full picture of how much load the production 
environment can handle. With Selenium, we can better 

https://wpengine.com/support/database-optimization-best-practices/
https://wpengine.com/support/database-optimization-best-practices/
https://wpengine.com/support/database-optimization-best-practices/#autoload
https://wpengine.com/support/database-optimization-best-practices/#autoload
https://www.cloudflare.com/
https://wpengine.com/support/how-to-disable-cart-fragments-for-woocommerce/
https://wpengine.com/support/how-to-disable-cart-fragments-for-woocommerce/
https://woocommerce.wordpress.com/2018/07/17/woocommerce-custom-product-tables-beta/
https://woocommerce.wordpress.com/2018/07/17/woocommerce-custom-product-tables-beta/
https://www.bloomberg.com/news/articles/2019-01-24/super-bowl-ad-prices-stall-after-years-of-relentless-increases
https://chrome.google.com/webstore/detail/blazemeter-the-continuous/mbopgmdnpcbohhpnfglgohlbhfongabi?hl=en


9

WHITE PAPER Preparing for peak traffic: A load test guide

understand the UI throughout the user flow. However, it’s 
recommended to run Selenium tests carefully since they’re 
resource intensive on the load engine. Therefore, it’s better to 
run Selenium on functional tests—not load tests.

Depending on what systems you’re testing, you may decide to 
include or exclude specific domains. For this example, we’re only 
testing the dev environment with the domain: wpe.codes. 

Note: The Chrome Extension is helpful for users who don’t have 
prior scripting knowledge. Although there are many ways to 
create scripts, this tool provides a great basis for creating testing 
scenarios if you’re just starting out.

For a step-by-step guide, here’s Blazemeter’s guide. 

If you have up-to-date HAR files for other third party services, 
you can use Blazemeter’s converter tool to convert to a JMX 
friendly format.

Prepare WP Engine environment 
before testing
To prevent issues and expedite your load testing setup, we 
recommend doing the following:

1.	 Submit a Support request to configure the environment 
for load testing. This replaces the need to whitelist multiple 
ranges of IPs from Blazemeter’s Engines. It also prevents our 

platform from blocking IPs suspected of malicious activity.    
If you’re using a third party WAF, you may have to whitelist 
any relevant IP ranges to ensure successful testing.

2.	 Submit a Support request to disable rate-limiting 
for the duration of testing. If our platform detects an 
excessive number of requests to the site from a single IP, 
the system will respond with 429 errors. For the real live 
event, this is not necessary, since a high volume of requests 
would not typically originate from the same IP.

Launch Debug Run
For every script created, it’s best practice to run a debug test 
to validate the configuration. Blazemeter offers a free low-scale 
test in a sandbox environment with enhanced logging features.    
This is recommended before running a large scale test to ensure 
the scripts are setup properly.

Calibration tests 
After creating and debugging the scripts, the next step is to 
determine how many users can be applied to one load engine. 
Just as we are testing capacity for the production environment, 
we need to test for the maximum number of virtual users each 
load engine can handle. Particularly with larger volumes of 
concurrents or resource intensive scripts, this helps prevent 
Blazemeter’s testing platform from being the bottleneck. 

To start, it’s recommended to set the calibration test with       
500 threads per engine and use only one engine. Here are      
the results of the first test:

https://wpe.codes/
https://guide.blazemeter.com/hc/en-us/articles/206732849-Chrome-Extension-Record
https://converter.blazemeter.com/
https://guide.blazemeter.com/hc/en-us/articles/207420645


10

WHITE PAPER Preparing for peak traffic: A load test guide

After the test, you can view the “Engine Health” tab to assess the 
performance of the load engine. 

In this case, CPU is consistently over 98% which means we’ll 
have to decrease the maximum number of users per engine. 
Additionally, most of the errors were 429 responses. Since we 
did not disable rate-limiting on the dev environment, we will 
have to redo the calibration test with these adjustments.

As a note, everytime you change your script, you’ll need to 
recalibrate to understand the resource impact on the load engine. 
For more details, here’s a guide to calibration testing. 

Test configurations. 
Once your scripts have been uploaded, debugged, calibrated, 
and tweaked as-needed, you can start setting up the 
configurations of each scenario.

Load distribution
Since this is a nationally televised event, most of the traffic will 
be from the U.S. For each user flow, we have set up East, West, 
and Central regions for the load engines. 

Failure criteria
Depending on acceptance and failure criteria for your business, 
this will vary. For this test, we have setup the following conditions:

APM integration
If you have your own New Relic APM license, you can integrate 
the service within Blazemeter’s portal. If you’re using APM 
directly with WP Engine, you’ll need to monitor performance 
directly in the NR dashboard.

JMeter properties
Within the portal, you can set or override parameters in         
your scripts. You can also use the Apache Jmeter application to 
edit your JMX script at a more granular level. 

An example of a property would be think time. Typically, users 
require time to consume content and decide on the next action. 
However, by default, JMeter scripts will send requests without 
pausing between each action. That’s not realistic and can easily 
overwhelm the test environment quickly. 

Fortunately, this can be prevented. By using the Blazemeter 
Chrome Extension, you can simulate real user behavior by 
adding a delay between user actions. These timer values 
will be automatically defined within the JMX script based on               
your recording. 

If you export a Jmeter and Selenium script into a Taurus YAML 
file, the timer values will be defined by the think-time variable. 
Assuming your scripts simulate realistic user behavior already, 
this section should be used only when necessary.   

https://guide.blazemeter.com/hc/en-us/articles/360001456978-Calibrating-a-JMeter-Test-Calibrating-a-JMeter-Test


11

WHITE PAPER Preparing for peak traffic: A load test guide

Emulate mobile traffic
Based on internal discussions and marketing insights, we predict 
an increase of traffic will come from mobile devices (normally 
35%). For the test scenario, traffic distribution will be 50% mobile 
and 50% web.

Within Blazemeter’s GUI, you can duplicate tests easily to create 
scenarios specifically for mobile networks. 

Create a multi-test
To create a test with multiple scenarios including web and 
mobile user activity, you can create a multi-test. 

With 10 user flows total, we can run this in a single test to simulate 
a realistic scenario that will deliver meaningful test results.

Ramp-up configuration
The plan is to stress test the environment to it’s breaking point. 
With this in mind, we tested for 5,000 concurrent users (2,000 is 
expected for event). Our team decided to ramp up by 500 users 
every five minutes to better understand any performance issues 
that might surface at each step.

Running the test
Before launching the test, we went through a quick checklist to 
make sure the test ran smoothly with more accurate results:

•	 Dev environment does not have references to the live site

•	 Platform configurations on prod environment are replicated 
to dev. Ex. Cache exclusions, page cache lengths

•	 Dev environment has complete stack including Nginx, 
Varnish, Apache, MySQL, PHP 7.3, DNS, CDN

•	 Infrastructure resources on dev is the same as prod

•	 Monitoring tools are setup for dev

•	 Internal comms are sent out to our teams in preparation for 
the influx of simulated traffic. This includes defining technical 
point of contact, escalation procedures, and timeframe of test.



12

WHITE PAPER Preparing for peak traffic: A load test guide

Analyzing results
During the test, we monitored the real-time data closely and 
discovered the number of hits/s plateaued at 1,000 users. 
Around 1,400 users, we started to see 504 error codes 
which means requests were evicted. This can occur when 
the nginx queueing system is full and cannot process any 
additional requests. During this period, CPU utilization began 
to consistently reach 98%. Although there is not always a direct 
correlation between 504s and CPU spikes, this was a case where 
we needed to investigate further.

As the scenario proceeded with ramping up users, our team 
decided to terminate the load engines gracefully at 2,000 users. 
At the surface and based on the Blazemeter metrics, failure 
criteria were not met. However, we reached a breaking point in 
terms of how many requests can be supported. 

Timeline report:

According to New Relic APM, web transaction time is normally at  
250 ms. During the load test, web transaction time spiked up to 
1,300 ms per request with most of the processing time coming from 
PHP and Memcached. This would be an area to dive into deeper.

Within the User Portal, you can retrieve the current Apache 
logs for the day. Parsing through the logs is a good start to 
understand which requests are most resource intensive.        
This could be the root cause of the performance issues at       
our breaking point.

cut -d’ ‘ -f6,7 wpecodes.access.log | sort | uniq 
-c | sort -rn | head

Here are the top requests hitting Apache from the load test:

18037 “POST /integration/

17655 “POST /service/

17353 “POST /blog/wp-engine-best-customer-
experience-world/

10710 “POST /plans/

7451 “POST /agency/

7239 “POST /about-us/

Since these pages should be cached, it’s abnormal to 
see a significant number of POST requests. After further   
investigation, our development team discovered a bug within 
the live chat integration. This issue only became apparent during 
heavy load since these pages do not experience a high volume 
of requests normally. 

With the root cause narrowed down, we plan to resolve the 
issue and run the stress test again with the expectation of 
improved cacheability and capacity.

Final thoughts.
It’s important to note that load testing is an iterative process. In 
addition to continuous testing and optimizing, different situations 
call for different tests. In this particular example, a stress test was 
performed to understand the site’s breaking point. After reviewing 
results and some fine-tuning, the next logical step would be to 



13

WHITE PAPER Preparing for peak traffic: A load test guide

perform a spike test to see how the production environment 
responds to an immediate surge in traffic. For ecommerce 
businesses preparing for Black Friday and Cyber Monday, 
you may consider following up with a soak test to understand 
performance over a longer period of time. 

If your WordPress site has more complexity in setup, then we 
recommend evaluating how you’re setting up the scripts. 
Example: For a headless WordPress site, multiple applications 
may be talking to WordPress at once. You’ll want to design your 
test with your entire ecosystem of services in mind such as      
API calls, cron jobs, and authentication methods.

For developers who prefer to design and run test scenarios via CLI, 
there are many open source tools available such as Taurus, Locust, 
and Grinder. These are all compatible with Blazemeter’s platform.

Lastly, load testing can get complicated. For example, testing 
WooCommerce can be a challenge. It’s straightforward to test a 
user scenario which includes adding a product to cart and going 
to checkout. But unless the user completes checkout, the load 
test won’t reveal the whole picture. A realistic scenario involves 
users going through the entire funnel of making an order.      
From the backend, orders involve a write to the database, 
which is critical to test. As of right now, there is no simple way of 
designing these types of tests. Fortunately, there is an abundance 
of resources available in the market. We have a few suggestions:

•	 Leverage professional services for their expertise and 
industry knowledge: 

•	 blazerunner.io
•	 support.loadimpact.com/3.0/how-to-tutorials/

testing-e-commerce-checkout-process/

•	 Experiment with 3rd party open-source solutions: github.
com/Coded-Commerce-LLC/WooCommerce-Load-Test

•	 Develop load testing knowledge to execute more complex 
tests: blazemeter.com/jmeter-tutorial/

https://blazerunner.io/
https://support.loadimpact.com/3.0/how-to-tutorials/testing-e-commerce-checkout-process/
https://support.loadimpact.com/3.0/how-to-tutorials/testing-e-commerce-checkout-process/
https://github.com/Coded-Commerce-LLC/WooCommerce-Load-Test
https://github.com/Coded-Commerce-LLC/WooCommerce-Load-Test
https://www.blazemeter.com/jmeter-tutorial/


14

WHITE PAPER Preparing for peak traffic: A load test guide

Tony Le
Tony Le is a WP Engine Sr. Solutions Engineer, AWS Solutions 
Architect Associate professional, and New Relic Performance Pro 
certified. He loves discovering interesting, innovative technology, 
and learning how it can help transform the digital experience,      
all while creating ways for customers to win online.

About the author. 



About WP Engine.
WP Engine is the world’s leading WordPress digital experience 
platform that gives companies of all sizes the agility, performance, 
intelligence, and integrations they need to drive their business 
forward faster. WP Engine’s combination of tech innovation and 
an award-winning team of WordPress experts are trusted by over 
120,000 companies across 150 countries to provide counsel and 
support, helping brands create world-class digital experiences. 
Founded in 2010, WP Engine is headquartered in Austin, Texas, and 
has offices in Brisbane, Australia; Limerick, Ireland; London, England; 
Omaha, Nebraska; San Antonio, Texas and San Francisco, California. 
www.wpengine.com

http://www.wpengine.com


16

WHITE PAPER Preparing for peak traffic: A load test guide

wpengine.com

http://wpengine.com

	Button1: 
	Button2: 
	Button3: 
	Button4: 
	Button5: 
	Button6: 
	Button7: 
	Button8: 
	Button9: 
	Button10: 
	Button11: 
	Button12: 
	Button13: 
	Button14: 
	Button15: 
	Button16: 
	Button17: 
	Button18: 


